库存索引:

A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
0
1
2
3
4
5
6
7
8
9

圆片级封装的一些基本原则 黄子伦 编译

    圆片级封装(WLP)技术正在流行,这主要是它可将封装尺寸减小至IC芯片大小,以及它可以圆片形式成批加工制作,使封装降低成本。WLP封装成本还会随芯片尺寸减小相应下降。此外,由于对电路封装、测试、分离和发运已知好电路可进行流水线作业和管理,从而进一步降低了封装总成本和缩短了周期时间。如果在设计半导体器件时就考虑到封装要求,这无疑会有益于器件布局设计,并可改善元件性能。

    圆片级封装(WLP)和圆片级芯片尺寸封装(WL-CSP)是同一概念,它们表示在电路封装完成后,仍以圆片形式存在。它们可用于有源IC和无源元件的封装。同其它封装一样,WLP必须为芯片提供导热和电气通道,还要为芯片提供合适的机械和环境保护。同样重要的是WLP还必须与标准的表面安装技术(SMT)兼容。

    1  器件与应用

    圆片级封装产品正以惊人的速度增长。预计到2005年,其平均年递增率(CAGR)可达210%。拉动这种增长的器件是集成电路、无源元件、高性能存贮器和引脚数量少的器件,如闪存/EEPROM、高速DRAM、SRAM、LCD驱动器、射频器件、逻辑器件、电池组电源管理器件及模拟器件(电压调整器、温度传感器、控制器、运算放大器、功率放大器等)。这些器件支撑移动电话、存储器件、PDA、笔记本电脑、数字视频控制器及通信网络等终端应用。

    在分析一种圆片是否适合于WLP时,圆片上的器件尺寸、焊盘数量、以及希望的节距等必须联系起来考虑,才能确认在芯片表面是否有足够的面积来分布所需的互连。这是因为:圆片级封装需要采用与"扇出"布线相反的"扇人"布线方式(如图1所示),芯片的边缘就是圆片级封装电路的边界。

    相反,CSP(比IC大,不超过20%)可使用扇人和扇出布线两种方式,有时还可在横向或纵向增添焊球

    和CSP相同,当前圆片级封装采用与SMT兼容的0.8mm、0.75mm、0.65mm和0.5mm节距。图2示出了这四种节距与器件尺寸和I/O数量的关系。该图近似地表明当节距从0.5mm至0.8mm变化时,IC表面能否支撑一个给定的I/O数。图中仅为近似值,设计者可利用公共I/O末减少电路与线路板间的互连数。随着0.5mm节距新标准(随后将是0.4mm节距)的出现,将会有更多类型的器件采用圆片级封装。因为节距减小时,可以分布更多的互连。

    味着器件不足以支撑给定节距的全部I/O。公共I/O可以合并,以减少I/O数。该图可用来简单地估计"扇人"能力

    2 WLP工艺

    Atmel、Bourns、加利福尼亚微器件、达拉斯半导体、仙童、富士通、日立、国际整流器、Maxim、Micro、三菱、国家半导体、日本电气、冲电气、菲利普、ST微电子、德克萨斯仪器及Xicor等厂商推出了不同型式的WLP产品。所有这些产品的封装工艺可分成三种基本工艺类型(表1)。

    薄膜再分布WL-CSP-E艺是当今使用最普遍的工艺。因为它的成本较低,非常适合大批量、便携式产品板级应用可靠性标准的要求。

    目前正在开发适合于更省I/O数器件的下一代WLP工艺。因为薄膜再分布工艺主导着当今市场,所以我们有必要仔细考察这类WL-CSP的现有设计和工艺。

    3  薄膜再分布WL-CSP

    如同其它的WLP一样,薄膜再分布WL-CSP的圆片仍采用常规圆片工艺制作。在圆片送交WLP供货商之前,要对圆片进行测试,以便对电路进行分类和绘出合格电路的圆片图。圆片在再分布之前,先要对器件的布局进行评估,以确认该圆片是否适合于进行焊球再分布。

    当初次评估一种圆片级封装工艺时,对于器件工程师来说,典型的办法是选取一种现有的引线键合器件来进行WLP转换。这一策略可为评估和转换的确认提供最快的途径。但是,引线键合的I/O焊盘通常排布得过于靠近,以致于不能安放焊球。即使可在现有的I/O焊盘上放置焊球,但焊球的分布不可能是最佳的,因而不能获得最好的可靠性。

    再分布工艺就是在器件表面重新布置I/O焊盘。图3示出了引线键合闪速存储器上再分布的情形。从图上可见,闪速存储器芯片的两个短边上的原有焊盘转换成了凸点阵列。在此实例中,器件表面使用了两层介质层,中间夹有的一层再分布金属化层用于改变I/O的分布。在这工序之后,安装上焊料球(见图4),于是芯片就变成了WLP产品。

    将引线键合焊盘设计再分布成焊球阵列焊盘的缺点是:生产的WLP产品在器件设计、结构或制造成本方面不可能是最佳时。但是,一旦证明其技术上可行,那么就可对这种电路重新设计,于是就可以消除外加再分布。这种